3 research outputs found

    The microbial community dynamics of cocaine sensitization in two behaviorally divergent strains of collaborative cross mice.

    Get PDF
    The gut-brain axis is increasingly recognized as an important pathway involved in cocaine use disorder. Microbial products of the murine gut have been shown to affect striatal gene expression, and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in C57BL/6J male mice. Some reports suggest that cocaine-induced behavioral sensitization is correlated with drug self-administration behavior in mice. Here, we profile the composition of the naïve microbiome and its response to cocaine sensitization in two collaborative cross (CC) strains. These strains display extremely divergent behavioral responses to cocaine sensitization. A high-responding strain, CC004/TauUncJ (CC04), has a gut microbiome that contains a greater amount of Lactobacillus than the cocaine-nonresponsive strain CC041/TauUncJ (CC41). The gut microbiome of CC41 is characterized by an abundance of Eisenbergella, Robinsonella and Ruminococcus. In response to cocaine, CC04 has an increased Barnsiella population, while the gut microbiome of CC41 displays no significant changes. PICRUSt functional analysis of the functional potential of the gut microbiome in CC04 shows a significant number of potential gut-brain modules altered after exposure to cocaine, specifically those encoding for tryptophan synthesis, glutamine metabolism, and menaquinone synthesis (vitamin K2). Depletion of the microbiome by antibiotic treatment revealed an altered cocaine-sensitization response following antibiotics in female CC04 mice. Depleting the microbiome by antibiotic treatment in males revealed increased infusions for CC04 during a cocaine intravenous self-administration dose-response curve. Together these data suggest that genetic differences in cocaine-related behaviors may involve the microbiome

    Microbial glutamate metabolism predicts intravenous cocaine self-administration in diversity outbred mice.

    Get PDF
    The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ). We found that ACQ mice are more active and exploratory and display decreased fear than FACQ mice. The microbial abundances that differentiated ACQ from FACQ mice were an increased abundance of Barnesiella, Ruminococcus, and Robinsoniella and decreased Clostridium IV in ACQ mice. There was a sex-specific correlation between ACQ and microbial abundance, a reduced Lactobacillus abundance in ACQ male mice, and a decreased Blautia abundance in female ACQ mice. The abundance of Robinsoniella was correlated, and Clostridium IV inversely correlated with the number of doses of cocaine self-administered during acquisition. Functional analysis of the microbiome composition of a subset of mice suggested that gut-brain modules encoding glutamate metabolism genes are associated with the propensity to self-administer cocaine. These findings establish associations between the microbiome composition and glutamate metabolic potential and the ability to acquire cocaine IVSA thus indicating the potential translational impact of targeting the gut microbiome or microbial metabolites for treatment of SUD. This article is part of the Special Issue on Microbiome & the Brain: Mechanisms & Maladies

    High-Diversity Mouse Populations for Complex Traits.

    No full text
    Contemporary mouse genetic reference populations are a powerful platform to discover complex disease mechanisms. Advanced high-diversity mouse populations include the Collaborative Cross (CC) strains, Diversity Outbred (DO) stock, and their isogenic founder strains. When used in systems genetics and integrative genomics analyses, these populations efficiently harnesses known genetic variation for precise and contextualized identification of complex disease mechanisms. Extensive genetic, genomic, and phenotypic data are already available for these high-diversity mouse populations and a growing suite of data analysis tools have been developed to support research on diverse mice. This integrated resource can be used to discover and evaluate disease mechanisms relevant across species
    corecore